Search results

Search for "cytochrome P450" in Full Text gives 39 result(s) in Beilstein Journal of Organic Chemistry.

Activity assays of NnlA homologs suggest the natural product N-nitroglycine is degraded by diverse bacteria

  • Kara A. Strickland,
  • Brenda Martinez Rodriguez,
  • Ashley A. Holland,
  • Shelby Wagner,
  • Michelle Luna-Alva,
  • David E. Graham and
  • Jonathan D. Caranto

Beilstein J. Org. Chem. 2024, 20, 830–840, doi:10.3762/bjoc.20.75

Graphical Abstract
  • often exhibit antibiotic activity and it has been shown that NNG exhibits antibiotic activity towards Gram-negative bacteria (0.18 to 25 μg/mL) [24]. Moreover, the nitramine functional group has potential to serve as a potent warhead in an antibiotic. For example, a cytochrome P450 homolog, XplA
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2024

Genome mining of labdane-related diterpenoids: Discovery of the two-enzyme pathway leading to (−)-sandaracopimaradiene in the fungus Arthrinium sacchari

  • Fumito Sato,
  • Terutaka Sonohara,
  • Shunta Fujiki,
  • Akihiro Sugawara,
  • Yohei Morishita,
  • Taro Ozaki and
  • Teigo Asai

Beilstein J. Org. Chem. 2024, 20, 714–720, doi:10.3762/bjoc.20.65

Graphical Abstract
  • and absolute configuration of 1, we assumed this compound could be a biosynthetic precursor of myrocins. In the flanking regions of AsPS and AsCPS, genes encoding oxidoreductases such as cytochrome P450 are present. These genes might be involved in the oxidation of 1 in the biosynthesis of myrocins. A
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Chemical and biosynthetic potential of Penicillium shentong XL-F41

  • Ran Zou,
  • Xin Li,
  • Xiaochen Chen,
  • Yue-Wei Guo and
  • Baofu Xu

Beilstein J. Org. Chem. 2024, 20, 597–606, doi:10.3762/bjoc.20.52

Graphical Abstract
  • cytochrome P450, pyridoxal-dependent decarboxylase, glutamine synthase, and tryptophan dimethyltransferase (Figure 5). These genes are likely crucial for the biosynthesis of the newly isolated alkaloids, 1 and 2. In examining the XL-F41 genome for methyltransferase domain-containing BGCs, we found a
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2024

Recent developments in the engineered biosynthesis of fungal meroterpenoids

  • Zhiyang Quan and
  • Takayoshi Awakawa

Beilstein J. Org. Chem. 2024, 20, 578–588, doi:10.3762/bjoc.20.50

Graphical Abstract
  • ) were expressed in A. oryzae to produce the intermediate 15. Next, genes encoding a short-chain oxidoreductase (SDR), methyltransferase (MT), cytochrome P450 oxygenase (P450), and FMO from various fungi were additionally expressed in A. oryzae expessing subABCDE to produce 22 bioactive meroterpenoids
PDF
Album
Review
Published 13 Mar 2024

Photochromic derivatives of indigo: historical overview of development, challenges and applications

  • Gökhan Kaplan,
  • Zeynel Seferoğlu and
  • Daria V. Berdnikova

Beilstein J. Org. Chem. 2024, 20, 228–242, doi:10.3762/bjoc.20.23

Graphical Abstract
  • using heme-containing oxygenases (cytochrome P450 monooxygenases, styrene/indole monooxygenases, flavin-containing monooxygenases, Baeyer–Villiger monooxygenases, etc.) or non-heme iron oxygenases (naphthalene dioxygenases, multicomponent phenol hydroxylases) [5][6][7][8]. The synthetic approaches
PDF
Album
Review
Published 07 Feb 2024

Visible-light-induced radical cascade cyclization: a catalyst-free synthetic approach to trifluoromethylated heterocycles

  • Chuan Yang,
  • Wei Shi,
  • Jian Tian,
  • Lin Guo,
  • Yating Zhao and
  • Wujiong Xia

Beilstein J. Org. Chem. 2024, 20, 118–124, doi:10.3762/bjoc.20.12

Graphical Abstract
  • an electron-withdrawing functional moiety into drug molecules would increase their metabolic stability [20], by avoiding, e.g., fast oxidation by cytochrome P450 oxidases [21]. In particular, the introduction of a trifluoromethyl group (–CF3) was shown to increase the metabolic stability of molecules
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2024

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • body’s own cytochrome P450 enzymes. These catalysts exhibit unique “radical rebound” reactivity at their heme active sites (Scheme 1) [12], a mechanism proposed by Groves and co-workers and heavily explored beginning in the 1970s [13][14]. This two-step functionalization sequence begins with HAT from an
  • asymmetric RLT processes. We hope that this perspective provides a useful framework for understanding RLT reactivity and inspires new advances using this versatile and intriguing elementary step. Overview of the RLT mechanism in nature and in literature. I: The radical rebound mechanism in cytochrome P450
PDF
Album
Perspective
Published 15 Aug 2023

Navigating and expanding the roadmap of natural product genome mining tools

  • Friederike Biermann,
  • Sebastian L. Wenski and
  • Eric J. N. Helfrich

Beilstein J. Org. Chem. 2022, 18, 1656–1671, doi:10.3762/bjoc.18.178

Graphical Abstract
  • tryptorubin (9) biosynthesis only encodes a 26 amino acid precursor peptide and a single cytochrome P450 monooxygenase [33][79], and hence it was overlooked by genome mining algorithms. On the other hand, large PKS or NRPS BGCs can be split across multiple contigs. This mosaic-like distribution of a single
PDF
Album
Perspective
Published 06 Dec 2022

Characterization of a new fusicoccane-type diterpene synthase and an associated P450 enzyme

  • Jia-Hua Huang,
  • Jian-Ming Lv,
  • Liang-Yan Xiao,
  • Qian Xu,
  • Fu-Long Lin,
  • Gao-Qian Wang,
  • Guo-Dong Chen,
  • Sheng-Ying Qin,
  • Dan Hu and
  • Hao Gao

Beilstein J. Org. Chem. 2022, 18, 1396–1402, doi:10.3762/bjoc.18.144

Graphical Abstract
  • nature and possess a variety of biological activities. Up to date, only five fusicoccane-type diterpene synthases have been identified. Here, we identify a two-gene biosynthetic gene cluster containing a new fusicoccane-type diterpene synthase gene tadA and an associated cytochrome P450 gene tadB from
  • fusicoccane-type diterpene synthases, in which a neutral intermediate is firstly formed and then protonated by an environmental proton. In addition, we demonstrate that the associated cytochrome P450 enzyme TadB is able to catalyze multiple oxidation of talaro-7,13-diene to yield talaro-6,13-dien-5,8-dione
  • . Keywords: cytochrome P450 enzyme; diterpene synthase; gene cluster; genome mining; site-directed mutagenesis; Introduction Terpenoids are a large class of natural products that attract extensive attention, due to not only their potential applications in pharmaceuticals, agrochemicals, etc. but also due to
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2022

Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants

  • Karan Malhotra and
  • Jakob Franke

Beilstein J. Org. Chem. 2022, 18, 1289–1310, doi:10.3762/bjoc.18.135

Graphical Abstract
  • Karan Malhotra Jakob Franke Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany 10.3762/bjoc.18.135 Abstract The cytochrome P450 monooxygenase
  • steroids in plants as a starting point for future research. Keywords: biosynthesis; CYPs; cytochrome P450 monooxygenases; plants; steroid; sterol; triterpene; triterpenoid; Introduction Triterpenoids are a large class of natural products derived from precursors containing 30 carbon atoms and composed of
  • steroids from plants lies in their extensive oxidative tailoring, which in many cases is carried out by cytochrome P450 monooxygenases (CYPs). CYPs represent one of the largest superfamilies of enzymes in plants; in many species, around 1% of all genes encode CYPs [6]. CYPs are well-known for their
PDF
Album
Supp Info
Review
Published 21 Sep 2022

Synthesis of tryptophan-dehydrobutyrine diketopiperazine and biological activity of hangtaimycin and its co-metabolites

  • Houchao Xu,
  • Anne Wochele,
  • Minghe Luo,
  • Gregor Schnakenburg,
  • Yuhui Sun,
  • Heike Brötz-Oesterhelt and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2022, 18, 1159–1165, doi:10.3762/bjoc.18.120

Graphical Abstract
  • -AT, [3][4]) polyketide synthase (PKS) and non-ribosomal peptide synthase (NRPS) [2] with a dehydrating bimodule [5][6] involved in the installation of the remaining Z-configured double bond within the polyketide backbone [7]. Furthermore, a cytochrome P450 monooxygenase was recently shown to be
PDF
Album
Supp Info
Letter
Published 07 Sep 2022

A Streptomyces P450 enzyme dimerizes isoflavones from plants

  • Run-Zhou Liu,
  • Shanchong Chen and
  • Lihan Zhang

Beilstein J. Org. Chem. 2022, 18, 1107–1115, doi:10.3762/bjoc.18.113

Graphical Abstract
  • plate. We further identified a cytochrome P450 monooxygenase, CYP158C1, which is able to catalyze the dimerization of isoflavones. CYP158C1 can also dimerize plant-derived polyketides, such as flavonoids and stilbenes. Our work represents a unique bacterial P450 that can dimerize plant polyphenols
  • , which extends the insights into P450-mediated biaryl coupling reactions in biosynthesis. Keywords: biaryl coupling; cytochrome P450; dimerization; isoflavone; natural product; Introduction Dimerization is a ubiquitous biotransformation in nature. Almost all forms of life, including bacteria, fungi
  • [1][10][11][12][13][14]. In plants and fungi, laccases and cytochrome P450 monooxygenases play pivotal roles in the biaryl bond formation of various polyketide dimers [10][15][16]. In contrast, in bacteria, P450 enzymes are the dominant catalysts, but no laccases have been reported for dimerization
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2022

Natural products in the predatory defence of the filamentous fungal pathogen Aspergillus fumigatus

  • Jana M. Boysen,
  • Nauman Saeed and
  • Falk Hillmann

Beilstein J. Org. Chem. 2021, 17, 1814–1827, doi:10.3762/bjoc.17.124

Graphical Abstract
  • ][166][167][168]. In A. fumigatus, the biosynthetic cluster of HA is comprised of 9 genes that spans over a 16.3 kb region on chromosome 4 (Figure 8). The cluster contains an oxidosqualine cyclase (helA), three Cytochrome P450 (helB1, helB2, helB3), a short-chain dehydrogenase/reductase (helC) and two
PDF
Album
Review
Published 28 Jul 2021

Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches

  • Rodrigo Costa e Silva,
  • Luely Oliveira da Silva,
  • Aloisio de Andrade Bartolomeu,
  • Timothy John Brocksom and
  • Kleber Thiago de Oliveira

Beilstein J. Org. Chem. 2020, 16, 917–955, doi:10.3762/bjoc.16.83

Graphical Abstract
  • detoxification of anthropogenic chemicals (cytochrome P450) and oxygen transport (hemoglobin) [5][6]. Taking into account this big group of molecules, porphyrins are notable due to both their physicochemical and electronic properties, which can be fine-tuned by functionalization of the core structures [8]. The
PDF
Album
Review
Published 06 May 2020

Construction of trisubstituted chromone skeletons carrying electron-withdrawing groups via PhIO-mediated dehydrogenation and its application to the synthesis of frutinone A

  • Qiao Li,
  • Chen Zhuang,
  • Donghua Wang,
  • Wei Zhang,
  • Rongxuan Jia,
  • Fengxia Sun,
  • Yilin Zhang and
  • Yunfei Du

Beilstein J. Org. Chem. 2019, 15, 2958–2965, doi:10.3762/bjoc.15.291

Graphical Abstract
  • of the obtained chromone derivatives was their conversion to chromone-derived natural products. Frutinone A, isolated from the leaves and root bark of Polygala fruticosa, shows various biological activities, including antibacterial, antioxidant, and potent cytochrome P450 1A2 inhibition (CYP1A2, IC50
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering

  • Eric J. N. Helfrich,
  • Geng-Min Lin,
  • Christopher A. Voigt and
  • Jon Clardy

Beilstein J. Org. Chem. 2019, 15, 2889–2906, doi:10.3762/bjoc.15.283

Graphical Abstract
  • . Keywords: bacterial sesquiterpenes and diterpenes; cytochrome P450; pathway engineering; synthetic biology; terpene biosynthesis; terpene cyclase; Introduction Evolutionary diversification of terpene biosynthetic pathways has resulted in the largest and most structurally diverse class of specialized
PDF
Album
Supp Info
Review
Published 29 Nov 2019

Nanangenines: drimane sesquiterpenoids as the dominant metabolite cohort of a novel Australian fungus, Aspergillus nanangensis

  • Heather J. Lacey,
  • Cameron L. M. Gilchrist,
  • Andrew Crombie,
  • John A. Kalaitzis,
  • Daniel Vuong,
  • Peter J. Rutledge,
  • Peter Turner,
  • John I. Pitt,
  • Ernest Lacey,
  • Yit-Heng Chooi and
  • Andrew M. Piggott

Beilstein J. Org. Chem. 2019, 15, 2631–2643, doi:10.3762/bjoc.15.256

Graphical Abstract
  • oxidoreductase (FE257_006543), as well as a cytochrome P450 (FE257_006544), an alpha/beta hydrolase (FE257_006545) and a short-chain dehydrogenase (FE257_006546). Notably, no homologous clusters were identified in other members of section Jani (A. brevijanus and A. janus) that have not been reported to produce
  • C-9, as hydroxylation at both sites is common to all of the (iso)nanangenines. The 9-hydroxylation also results in migration of the double bond on the decalin to Δ7,8. The two hydroxylations could be catalysed by the FAD-dependent oxidoreductase or one of the cytochrome P450 oxygenases. From this
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2019

Current understanding and biotechnological application of the bacterial diterpene synthase CotB2

  • Ronja Driller,
  • Daniel Garbe,
  • Norbert Mehlmer,
  • Monika Fuchs,
  • Keren Raz,
  • Dan Thomas Major,
  • Thomas Brück and
  • Bernhard Loll

Beilstein J. Org. Chem. 2019, 15, 2355–2368, doi:10.3762/bjoc.15.228

Graphical Abstract
  • acyclic substrate GGDP (3) is stereospecifically cyclized by CotB2 to cyclooctat-9-en-7-ol (4), with a fusicoccane 5–8–5 fused ring system. Two cytochrome P450 enzymes, CotB3 and CotB4, subsequently functionalize cyclooctat-9-en-7-ol (4) to the bioactive compound cyclooctatin (5). The bacterial diterpene
PDF
Album
Review
Published 02 Oct 2019

Isolation and characterisation of irinans, androstane-type withanolides from Physalis peruviana L.

  • Annika Stein,
  • Dave Compera,
  • Bianka Karge,
  • Mark Brönstrup and
  • Jakob Franke

Beilstein J. Org. Chem. 2019, 15, 2003–2012, doi:10.3762/bjoc.15.196

Graphical Abstract
  • characteristic of Physalis species. The biosynthesis of androstanes in mammals requires three enzymatic steps starting from cholesterol (9, Figure 3B) [27]. Cholesterol (9) is converted to pregnenolone (10) by the cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), which cleaves the C20–C22 bond
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Fluorine-containing substituents: metabolism of the α,α-difluoroethyl thioether motif

  • Andrea Rodil,
  • Alexandra M. Z. Slawin,
  • Nawaf Al-Maharik,
  • Ren Tomita and
  • David O’Hagan

Beilstein J. Org. Chem. 2019, 15, 1441–1447, doi:10.3762/bjoc.15.144

Graphical Abstract
  • discovery chemistry. It is however, significantly less lipophilic than aryl-SCF3 which may offer a practical advantage in tuning overall pharmacokinetic profiles of molecules in development. Keywords: Cunninghamella elegans; cytochrome P450; fluorinated substituents; organofluorine metabolism
  • . This fungus is rich in cytochrome P450 activity and has been used as a model organism in which to mimic phase one mammalian metabolism of xenobiotics [19][20][21]. Results and Discussion The two aryl α,α-difluoroethyl thioethers 4 and 5 in Figure 3 were selected for C. elegans incubations rather than 1
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

Phylogenomic analyses and distribution of terpene synthases among Streptomyces

  • Lara Martín-Sánchez,
  • Kumar Saurabh Singh,
  • Mariana Avalos,
  • Gilles P. van Wezel,
  • Jeroen S. Dickschat and
  • Paolina Garbeva

Beilstein J. Org. Chem. 2019, 15, 1181–1193, doi:10.3762/bjoc.15.115

Graphical Abstract
  • enantiomers of the corresponding alcohols (R)- and (S)-albaflavenol (16ab) and the epoxide 4β,5β-epoxy-2-epi-zizaan-6β-ol (18) are known oxidation products that are all made by a cytochrome P450 monooxygenase [10][29] that is genetically clustered with the epi-isozizaene synthase for the cyclisation of FPP to
  • the recombinant enzyme from Streptomyces malaysiensis [43]. The diterpene 7 is a precursor to the lysophospholipase inhibitor cyclooctatin (20) formed by the action of two genetically clustered cytochrome P450 monooxygenases CotB3 and CotB4 (Scheme 4) [40][44], while no derivatives from 8 are
  • -MIB (2). First, GPP is methylated to 14 by a SAM-dependent methyltransferase, followed by a terpene synthase catalysed cyclisation through a cationic cascade to 2. Oxidation products derived from 3 by the cytochrome P450 monooxygenase that is genetically clustered with the epi-isozizaene synthase in
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2019

Synthesis of indole–cycloalkyl[b]pyridine hybrids via a four-component six-step tandem process

  • Muthumani Muthu,
  • Rakkappan Vishnu Priya,
  • Abdulrahman I. Almansour,
  • Raju Suresh Kumar and
  • Raju Ranjith Kumar

Beilstein J. Org. Chem. 2018, 14, 2907–2915, doi:10.3762/bjoc.14.269

Graphical Abstract
  • ]pyridine has been reported as inhibitors of cytochrome P450 [33]. Furthermore, muscopyridine is being used in perfume industry [34]. Among the several methods available for the synthesis of pyridines or cycloalkyl-fused pyridines [23][24][25][26][27][35][36][37][38][39][40][41][42][43][44], the one-pot
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2018

Pd-Catalyzed microwave-assisted synthesis of phosphonated 13α-estrones as potential OATP2B1, 17β-HSD1 and/or STS inhibitors

  • Rebeka Jójárt,
  • Szabolcs Pécsy,
  • György Keglevich,
  • Mihály Szécsi,
  • Réka Rigó,
  • Csilla Özvegy-Laczka,
  • Gábor Kecskeméti and
  • Erzsébet Mernyák

Beilstein J. Org. Chem. 2018, 14, 2838–2845, doi:10.3762/bjoc.14.262

Graphical Abstract
  • ; enzyme; 13α-estrone; Hirao reaction; 17β-HSD1 inhibition; OATP2B1; STS; Introduction The biosynthesis of estrogens occurs via various enzymatic routes. Cytochrome P450 aromatase catalyzes the conversion of nonaromatic steroids to estrogens [1]. Moreover, hydrolysis of estrone 3-sulfate, existing as a
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2018

Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems

  • Katarina Kemper,
  • Max Hirte,
  • Markus Reinbold,
  • Monika Fuchs and
  • Thomas Brück

Beilstein J. Org. Chem. 2017, 13, 845–854, doi:10.3762/bjoc.13.85

Graphical Abstract
  • recombinant host. The vast majority of modifications accomplished in the downstream biosynthesis of diterpenes comprise introduction of oxygen moieties by cytochrome-P450 enzymes, which are commonly not sourced from bacterial systems. In fact the functional reconstitution of eukaryotic terpene synthases or
PDF
Album
Review
Published 08 May 2017

Biochemical and structural characterisation of the second oxidative crosslinking step during the biosynthesis of the glycopeptide antibiotic A47934

  • Veronika Ulrich,
  • Clara Brieke and
  • Max J. Cryle

Beilstein J. Org. Chem. 2016, 12, 2849–2864, doi:10.3762/bjoc.12.284

Graphical Abstract
  • , which is generated by the actions of cytochrome P450 (Oxy) enzymes that affect the crosslinking of aromatic side chains of amino acid residues contained within the GPA heptapeptide precursor. Given the crucial role peptide cyclisation plays in GPA activity, the characterisation of this process is of
  • homologues can display significantly different catalytic propensities despite their overall similarities. Keywords: crystal structure; cytochrome P450; glycopeptide antibiotic; peptide; phenolic coupling; Introduction The glycopeptide antibiotics (GPAs) are a series of highly modified heptapeptide natural
  • generation GPAs in clinical use are all entirely derived from in vivo biosynthesis [1][2]. The biosynthesis of GPAs is based around the initial synthesis of the linear heptapeptide by a type-I non-ribosomal peptide synthetase (NRPS) [5][6] and its subsequent modification by cytochrome P450 monooxygenases [7
PDF
Album
Supp Info
Full Research Paper
Published 27 Dec 2016
Other Beilstein-Institut Open Science Activities